Finite subset spaces of closed surfaces
نویسنده
چکیده
The kth finite subset space of a topological space X is the space expkX of non-empty finite subsets of X of size at most k , topologised as a quotient of X . The construction is a homotopy functor and may be regarded as a union of configuration spaces of distinct unordered points in X . We show that the finite subset spaces of a connected 2–complex admit “lexicographic cell structures” based on the lexicographic order on I and use these to study the finite subset spaces of closed surfaces. We completely calculate the rational homology of the finite subset spaces of the two-sphere, and determine the top integral homology groups of expkΣ for each k and closed surface Σ. In addition, we use Mayer-Vietoris arguments and the ring structure of H∗(SymΣ) to calculate the integer cohomology groups of the third finite subset space of Σ closed and orientable. AMS Classification 55R80 (54B20 55Q52)
منابع مشابه
Functionally closed sets and functionally convex sets in real Banach spaces
Let $X$ be a real normed space, then $C(subseteq X)$ is functionally convex (briefly, $F$-convex), if $T(C)subseteq Bbb R $ is convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$ is functionally closed (briefly, $F$-closed), if $T(K)subseteq Bbb R $ is closed for all bounded linear transformations $Tin B(X,R)$. We improve the Krein-Milman theorem ...
متن کاملCoordinate finite type invariant surfaces in Sol spaces
In the present paper, we study surfaces invariant under the 1-parameter subgroup in Sol space $rm Sol_3$. Also, we characterize the surfaces in $rm Sol_3$ whose coordinate functions of an immersion of the surface are eigenfunctions of the Laplacian $Delta$ of the surface.
متن کاملAn extension theorem for finite positive measures on surfaces of finite dimensional unit balls in Hilbert spaces
A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...
متن کاملConvergence Theorems for -Nonexpansive Mappings in CAT(0) Spaces
In this paper we derive convergence theorems for an -nonexpansive mappingof a nonempty closed and convex subset of a complete CAT(0) space for SP-iterative process and Thianwan's iterative process.
متن کاملF eb 2 00 5 SOME RESULTS IN GENERALIZED ŠERSTNEV SPACES
In this paper, we show that D-compactness in GeneralizedŠerstnev spaces implies D-boundedness and as in the classical case, a D-bounded and closed subset of a characteristic GeneralizedŠerstnev is not D-compact in general. Finally, in the finite dimensional GeneralizedŠerstnev spaces a subset is D-compact if and only if is D-bounded and closed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003